Wednesday, June 12, 2024

Thinking by playing around

Computer scienceThinking by playing around


Richard Feynman’s Nobel Prize winning discoveries in quantum electrodynamics were partly inspired by his randomly observing a spinning dinner plate one day in the cafeteria. Paul Feyerabend said regarding science discovery, “The only principle that does not inhibit progress is: anything goes” (within relevant ethical constraints, of course).

Ideas can come from anywhere, including physical play. Various books can improve creative discovery skills, like George Pólya’s How to Solve It, Isaac Watts’ Improvement of the Mind, W. J. J. Gordon’s Synectics, and methodologies like mind mapping and C-K theory, to name a few. Many software products present themselves as shiny new tools promising help. However, we are not just disembodied minds interacting with a computer, but instead integrated beings with reasoning integrated with memories, life history, emotions and multisensory input and interaction with the world The tactile is certainly a key avenue of learning, discovering, understanding.

Fidget toys are popular. Different kinds of toys have different semiotics with respect to how they interplay with our imaginations. Like Legos. Structured, like Le Corbusier-style architecture, or multidimensional arrays or tensors, or the snapping together of many software components with well-defined interfaces, with regular scaling from the one to many. Or to take a much older example, Tinkertoys—the analogy of the graph, interconnectedness, semi-structured but composable, like DNA or protein chains, or complex interrelated biological processes, or neuronal connections, or the wild variety within order of human language.

As creative workers, we seek ideas from any and every place to help us in what we do. The tactile, the physical, is a vital place to look.

The post Thinking by playing around first appeared on John D. Cook.

Check out our other content

Check out other tags:

Most Popular Articles